翻訳と辞書
Words near each other
・ Varian Johnson
・ Varian Lonamei
・ Varian Medical Systems
・ Varian Rule
・ Varian Semiconductor
・ Varian v. Delfino
・ Varian's theorems
・ Varian, Inc.
・ Varian, Iran
・ Variance
・ Variance (accounting)
・ Variance (album)
・ Variance (disambiguation)
・ Variance (land use)
・ Variance Adaptive Quantization
Variance decomposition of forecast errors
・ Variance Films
・ Variance function
・ Variance gamma process
・ Variance inflation factor
・ Variance reduction
・ Variance risk premium
・ Variance swap
・ Variance-based sensitivity analysis
・ Variance-gamma distribution
・ Variance-stabilizing transformation
・ Variani
・ Varians Oolith Formation
・ Variant
・ Variant (magazine)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Variance decomposition of forecast errors : ウィキペディア英語版
Variance decomposition of forecast errors
In econometrics and other applications of multivariate time series analysis, a variance decomposition or forecast error variance decomposition (FEVD) is used to aid in the interpretation of a vector autoregression (VAR) model once it has been fitted.〔Lütkepohl, H. (2007) ''New Introduction to Multiple Time Series Analysis'', Springer. p. 63.〕 The variance decomposition indicates the amount of information each variable contributes to the other variables in the autoregression. It determines how much of the forecast error variance of each of the variables can be explained by exogenous shocks to the other variables.
== Calculating the forecast error variance ==
For the VAR (p) of form
:
y_t=\nu +A_1y_+\dots+A_p y_+u_t
.
This can be changed to a VAR(1) structure by writing it in companion form (see general matrix notation of a VAR(p))
:
Y_t=V+A Y_+U_t
where
::
A=\begin
A_1 & A_2 & \dots & A_ & A_p \\
\mathbf_k & 0 & \dots & 0 & 0 \\
0 & \mathbf_k & & 0 & 0 \\
\vdots & & \ddots & \vdots & \vdots \\
0 & 0 & \dots & \mathbf_k & 0 \\
\end
,
Y=\begin
y_1 \\ \vdots \\ y_p \end
, V=\begin
\nu \\ 0 \\ \vdots \\ 0 \end
and
U_t=\begin
u_t \\ 0 \\ \vdots \\ 0 \end

where y_t, \nu and u are k dimensional column vectors, A is kp by kp dimensional matrix and Y, V and U are kp dimensional column vectors.
The mean squared error of the h-step forecast of variable j is
:
\mathbf()=\sum_^\sum_^(e_j'\Theta_ie_k)^2=\bigg(\sum_^\Theta_i\Theta_i'\bigg)_=\bigg(\sum_^\Phi_i\Sigma_u\Phi_i'\bigg)_,

and where
:
* e_j is the jth column of I_K and the subscript jj refers to that element of the matrix
:
* \Theta_i=\Phi_i P , where P is a lower triangular matrix obtained by a Cholesky decomposition of \Sigma_u such that \Sigma_u = PP', where \Sigma_u is the covariance matrix of the errors u_t
:
* \Phi_i=J A^i J', where
J=\begin
\mathbf_k &0 & \dots & 0\end ,
so that J is a k by kp dimensional matrix.
The amount of forecast error variance of variable j accounted for by exogenous shocks to variable k is given by \omega_ ,
:
\omega_=\sum_^(e_j'\Theta_ie_k)^2/MSE() .


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Variance decomposition of forecast errors」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.